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Parallel Implementation & Analysis of Low-Level Vision Algorithms 

1.0 Objective 
The objective of this project was to implement low-level vision algorithms on a group of Inmos 
T800 cransputers and perform an analysis of speed-up, performance, ease-of-implementation, 
efficiency of hardware utilization, and other related engineering issues. 

2.0 Approach 
To reach the objective, this project was broken up into several intermediate steps. The following 
are the general steps that were taken. 

2.1 INMOS T800 Transputer 
In order to fully exploit the parallel processing capabilities of the transputer, familiarization with 
the specifications, characteristics, and capabilities of the INMOS T800 transputer was required. 

2.2 Soctware 
Extensive knowledge of the parallel language of the transputer, Occam, was acquired. To avoid 
debugging problems at higher levels, simple image processing algorithms were implemented first. 

2.3. Low Level Image Processing 
A series of low-level image processing algorithms was implemented first sequentially, in Occam, 
on a single transputer. Some Occam functions were also written to assist the procedures. 

2.4 Aciual Parallel Implementation 
Once running smoothly at the serial level, the routines were mapped onto the 17 T800 transputers, 
in two different configurations; the straight pipe architecture network and the ring architecture 
network. A comparative analysis was performed against the two networks. The algorithms were 
also implemented onto eight different sized mappings of transputers for each configuration to 
determine how efficiently the tasks were divided up for the available hardware. 

2.5 Results 
Each algorithm was executed on both networks, varying the number of transputers used from one 
to seventeen in increments of two. Timings were acquired for actual processing time, 
communication time, and the total time. Six graphs were plotted for each algorithm. The actual 
processing time of each algorithm for both network configurations was plotted together against 
the number of transputers to compare the difference in the two networks. The communication 
times md the total times were also plotted on the same scale for both network configurations to 
compare the effect communication costs have on the algorithm. Speed-Up curves for each 
separate network comparing processing speed-up verses actual speed-up were plotted against the 
number of transputers. Finally, the total efficiency against the number of processors was plotted 
for bom networks together to compare which configuration was more efficient. 

2.6 Analysis 
Analysis will be broken up into two different sections. The first section will analyze the problems 
encountered in the project, and the second portion will analyze the results obtained from the 
parallel implementation. The problems encountered in the project include software problems, 
communication problems, and data partitioning problems. The parallel implementation analysis 
includes speed-up, ease-of-implementation, efficiency, and suggested improvements. 



3.0 The T800 Transputer 
The T800 transputer is a powerful, 32-bit CISC (Complex Instruction Set Computer) 
microprocessor that is capable of providing up to 10 MIPS (Millions of Instructions Per Second) 
of processing power. Each transputer has 1 Mbyte of on-chip memory, and four communication 
links that allow any number of transputers to be cascaded together in a variety of configurations. 
Transputers linked together can all operate in parallel, where passing data, processing data, and 
receiving data all are functions accomplished simultaneously, independent of each other. 
Seventeen T800 transputers will be utilized for actual data computations to provide parallel 
processing power to a series of low-level image processing algorithms. The transputers will be 
accessed through a VME bus connection over a SUN SPARC station. One additional transputer 
will be utilized to handle messages in and out of the system, and the root transputer will be used 
as a pass through link from the SUN host to the array of transputers. This configuration should 
provide a powerful parallel processing environment for this project. 
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Figure 1: The IMS T800 Transputer - Engineering Data' 

When implemented in an optimal parallel manner on the transputers , these low-level image 
processing algorithms should run much faster, exhibiting a near-linear speed-up. This experiment 
provides evidence to illustrate this effect, among discussing other important issues involved in 
parallel processing. A thorough understanding of the selected algorithms and how they actually 
operate is required before they are implemented in parallel, in order to efficiently divide the 
algorithms up into subtasks and map the algorithms optimally onto the transputers. 

[1] "The Transputer Databook", pp. 189. 



3.1 Processes and Concurrency 
A sequence of instructions, called a process, starts, performs a number of actions, and either stops 
without completing or terminates complete. The transputer can run several processes 
concurrently, where each process is assigned a priority of either high or low. A microcoded 
scheduler enables any number of processes to be executed together sharing the processor time on 
a single transputer. The scheduler operates so that inactive processes do not consume any 
processing time, and active processes waiting to be executed are held into two linked lists of 
process workspaces. A group of transputers cascaded together can also run processes 
concurrently, on each transputer, where the processes can be either the same or different on each 
transputer. This is where the power of parallel processing is most effective. 

3.2 Memory 
For high data throughput rates, each T800 is equipped with 4 Kbytes of internal static memory. 

3.3 Communication 
A Channel is an unbuffered, unidirectional point-to-point connection for communication between 
two processors executing in parallel. Channels allow synchronized and unbuffered 
communication between processes. As a result, a channel needs no process queue, no message 
queue, and no message buffer. A link is defined as a pair of unidirectional channels connecting 
two transputers. 

P2 P3 P2  ^ P3 P2 P3  w -^ 

Figure 2A : One Channel Figure 2B: Two Channels Figure 2C: One Link 

Communication on the channels must be synchronized, where when the on end of a channel is 
ready to send or receive, the other end should be ready to do the opposite. A send process cannot 
proceed until the corresponding receive process on the same channel is ready. The programmer 
has complete control of data flow, and the route that is taken. 

Figure 3: Proper Synchronized communication between two transputers. Processor P2 sends data to processor P3, 
which receives the data along the same channel. 

3.4 Networks 
Several transputers may be connected together to form a network, where simple link connections 
for point-to-point communication join the network together. The multi-transputer system is 
represented by a configuration of independent processors connected together by links, where 
concurrent processing occurs on each separate transputer. The transputer network behaves as a 
group of MIMD (Multiple Instruction, Multiple Data) processors. A variety of different 
architectural designs can be constructed to suit the need of the problem. 



OOCH 
Figure 4A: Straight Pipe Architecture Figure 4B: Ring Architecture 

4.0 Software 
To fully exploit the power of the transputers, Occam, the parallel language of the transputer was 
used. This low-level language has proven not to be the easiest language to master. There are very 
few manuals out on it, and what few manuals do exist, they are very vague as to how to write 
routines. The two books that were mainly used, [1] & [2], gave very few examples to experiment 
with, which made programming much more difficult. In Occam, there are several intricate steps 
that must be followed before you can actually "execute" an algorithm. There are several separate 
files that must be set up containing important information, and they must be written painstakingly 
perfect. 

"feu must have a physical understanding of how the transputers are connected together among 
each other in order to properly configure your different networks. First, determine the type of 
network configuration you will be using. Next, set up all required physical connections between 
transputers. Now the channels, or logical connections between transputers, must all be declared in 
software in a ".pgm" file. This .pgm file is the core of the programs required to execute code. 

A global "include" file declares required global variables. Global variables do not mean that the 
value at this variable is the same on all transputers, but rather that this variable is going to be 
accessed on all transputers. Global information is obtained by sending data appropriately among 
all the transputers in the network. 

Different programs must be written for the root transputer and for transputers that are not the root 
transputer. In the root transputer process, the root transputer must be multiplexed to be 
communicated to the host computer and the other transputers. 

Programs must also be generated to read the data into the root transputer from the host and pass it 
onto the next transputer in the network. A separate program must also be written to read and 
pass data along the network past the root transputer. 

The programs which perform actual data manipulations, such as the algorithms chosen for this 
project, can be generic and called by either the root transputer or any other transputer. 

Occam is a very type specific language. Everything must be declared up front, and it is illegal to 
mix and match variables. Any mixing of types requires type casting, which is discussed further 
into the report. 

There is no operator precedence in Occam, so parentheses define the hierarchical structure of 
expressions. The Occam language comes equipped with an elementary function library that 
provides elementary functions that are compatible with the ANSI/IEEE standard for binary 
floating-point arithmetic. The functions include logarithm, exponential, trigometric, inverse 
trigometric, polar angles, hyperbolic trigometric, and random number generation capabilities. 

4.1 Serial to Parallel Conversion 
The process of converting a sequential program to run on a multiprocessor seems particularly 
likely to result in problems of some kind. Whenever possible, the skeleton of the new program 
should be rewritten from scratch. 



Given the great difficulty of finding bugs, especially in parallel code, much greater emphasis must 
be placed on writing correct code from the beginning. With this in mind, organizing programs in 
terms of pure mathematical functions, with clearly identified arguments and outcomes, enhances 
the possibility for correctness and automatic compiler checking. 

Another technique to assist in the task of localizing bugs and limiting the complexity of your 
programs, is to use standard synchronization patterns where possible and encapsulating them as 
completely as possible. When all else fails in the debugging arena, an often useful approach to 
debugging is to sit down with pencil paper, and listing, and follow the programs manually. 

5.0 Low-Level Image Processing 
Image Processing required vast amounts of processing power, due to the large quantities of data 
involved. There are three general levels of image processing; Low-level, intermediate-level, and 
high-level. At the lowest level, an image is treated as raw data; a set of picture elements (pixels) 
without reference to the structure or objects within the image. Operations act on the image on a 
pixel by pixel basis in a two-dimensional grid. Data is treated like a set of features, rather than 
just pixels at the intermediate-levels. Higher-level routines place little emphasis on parallelism, but 
more on control and search strategies and knowledge about the image's domain. It is at the low- 
level that parallel processing is most advantageous and most efficient, since large quantities of 
pixels are processed simultaneously. 

5.1 Selected Algorithms 
The following algorithms have been implemented and use a variety of different techniques. The 
routines differ with the number of masks required, the number of convolutions required, the 
conversion of images from BYTE to INT to REAL, some required overlapping edge information, 
some required normalization, and some only return values as opposed to an image. All routines 
have been implemented on a single transputer, and on both the Straight Pipe network and the Ring 
network. 

5.1.1 Average Pixel Intensity 
This algorithm calculates and returns the value of the average pixel intensity of the input image. 
This algorithm requires global communication to find the average pixel intensity across the entire 
image. Each transputer determines the average pixel intensity of the chunk of imagery it has to 
process, and all the results are sent to the root transputer for a global average. No overlap, no 
masks, and no normalization is required, and there is no output image. 

5.1.2 Threshold 
This algorithm turns an eight-bit grey scale image into a single-bit black and white image, where 
the cut off point for black or white pixels is a predetermined threshold value. The input image and 
output images will be of the same size. 

5.1.3 Average Value Threshold 
This algorithm performs thresholding at the average intensity value of the input image. This 
algorithm requires global communication first to find the average pixel intensity across the entire 
image, and secondly to pass the information back to each transputer to threshold the image. The 
input image and the output image will be of the same size. 

5.1.4 Generalized Convolution Filter 
This algorithm is an averaging filter that convolves a specified kernel around the image, resulting 
in a smoothing of rough edges in the image. The kernel can range from 3x3 to 1 lxl 1. 



1   1   1 

Fs(x,y) =   [ f(x,y)] * [ 1    1    1   ]      where Fs(x,y) is the new image value at (x,y) 
1    1    1 and "*" implies convolution. 

This input image requires a variable sized mask (3x3 to 11x11), and also requires overlapping 
edge information. The resulting image can be locally normalized by dividing the output by the 
sum of the mask. The resulting image will be half the size of the mask in rows and columns 
smaller on the outer perimeter edges due to the overlap. 

5.1.5 Four Nearest Neighbor Mean Filter 
A smoothing filter that calculates the mean value of each pixel and its four nearest neighbors. The 
output image is one row and one column smaller along the perimeter due to the lacking overlap 
information at the perimeter. 

5.1.6 Eight Nearest Neighbor Mean Filter 
A smoothing filter that calculates the mean value of each pixel and its eight nearest neighbors. 
The output image is one row and one column smaller along the perimeter due to the lacking 
overlap information at the perimeter. 

5.1.7 Four Nearest Neighbor Median Filter 
A smoothing filter that calculates the median value of each pixel in an image and its four nearest 
neighbors. The output image is one row and one column smaller along the perimeter due to the 
lacking overlap information at the perimeter. 

5.1.8 Eight Nearest Neighbor Median Filter 
A smoothing filter that calculates the median value of each pixel in an image and its eight nearest 
neighbors. The output image is one row and one column smaller along the perimeter due to the 
lacking overlap information at the perimeter. 

5.1.9 Sobel Edge Filter 
This edge detection routine calculates the sum of two separate convolutions using two separate 
3x3 kernels for its results. 

12    1 10-1 

Fs(x,y) = 0.125 x{ [ f(x,y) * 0    0   0 ] + [ f(x,y) * 2    0    -2]} 
-1 -2-1 10    -1 

where Fs(x,y) is the Sobel value at (x,y) and "*" implies convolution. 

This input image requires two 3x3 sized masks, overlapping edge information, and also requires 
global normalization. This routine cannot be locally normalized by dividing by the sum of the 
masks, because both sums added up to zero, making division impossible. The resulting image 
will be one row and one column smaller on each of the outer perimeter edges due to the overlap. 



5.1.10 Roberts Cross Edge Detection Filter 
This edge detection filter outputs the maximum of the diagonal difference over every 2x2 window 
of the image. 

a      b 
—> max(la-dl,lb-cl) 

c      d 

This image does not require a mask, but does require an overlap of one in the right and downward 
directions. Although one can see from the above formula that no resulting pixel could be 
negative, nor could they be larger than the input image, the output image requires normalization to 
spread out the range of pixel values from a small gap to a standard range from 0 to 255. The 
resulting image will be one row and one column smaller on only two outer perimeter edges (the 
right edge, and the bottom edge) due to the overlap. 

5.1.11 Normalization 
This algorithm converts or "normalizes" the values of an image ranging from the most negative 
number to the most positive number, to an image that ranges from 0 to 255. The input image and 
the output image are the same size. This algorithm was not directed executed, but instead was 
utilized by several of the above algorithms internally. 

25S- 

min 

5.2 Functions 
Four simple functions have been implemented simply to reduce the amount of code in the 
algorithms, and to make the programs easier to follow by avoiding the use of a series of IF-THEN 
statements. 

5.2.1 Minvalue 
This function returns the minimum value of two values passed to the routine. 

5.2.2 Maxvalue 
This function returns the maximum value of two values passed to the routine. 

5.2.3 Abs 
This function returns the absolute value of an integer passed to the routine. 



5.2.4 Sorter 
This function sorts an array into ascending order using a modified bubble sort. Instead of 
comparing n data items O(n) times, it compares them < O(n). There is a flag that is set if a 
complete comparison of the n data items yields no switches, then the sorter is finished, and does 
not have to keep checking already sorted elements. 

6.0 Actual Parallel Implementation 
This was the most difficult portion of the project. There are really two aspects to this portion of 
the problem. First, Hardware configuration. The transputers must first be properly connected 
physically, and also configured in software to match the chosen hardware design. This takes a lot 
of concentration to get correct. For the multiple transputer configurations, a straight pipe network 
and a ring network have been implemented. The straight pipe can only pass data in one direction 
from the root, where the ring can pass data in two different directions from the root 
simultaneously. This bidirectional method of concurrent data passing through the transputers 
should cut down on communication time. 
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Figure 5: The Straight Pipe Network 
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Figure 6: The Ring Network 

6.1 Data 
The data used for this project consisted of strictly 256x256 sized imagery, 8 bits deep providing 
256 shades of grey. Any sized imagery could be utilized with this software, but a small 
representation of the image was chosen since so many different algorithms had to be executed in 
so many different configurations. All of the masks, or kernels, used in the algorithms were 3x3 
pixels, although the software written can also support any size mask desired. 
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Figure 7A: Sample Image, Size 256 x 256 Pixels Figure 7B: Sample Mask, size 3x3 pixels. 

6.2 Program Effectiveness 
To effectively take advantage of parallel processing, the number of process creations and 
synchronizations in a partitioned algorithm must be minimized. Since process creations are more 
expensive than process synchronizations, the usual tactic is to create the desired number of 
processes when the algorithm begins execution and to synchronize them when necessary. 
Communication overhead will be significant if synchronization is done frequently. Because 
synchronizations are so expensive, a goal of the parallel algorithm designer should be to make the 
grain size, or relative amount of work done between synchronizations, as large as possible, while 
keeping all the processors busy.2 

6.3 Partitioning The Data 
Partitioning is the sharing of a computation where a problem is divided into subproblems that are 
shared by individual processors and the solutions to the subproblems are combined to form the 
problem solution. Processing tasks should be subdivided to make the most effective use of 
available parallel hardware. Since the algorithms selected do not require more than one actual 
process than can be accomplished at a time, the data will be partitioned among the transputers 
instead of partitioning the algorithms. The most difficult portion of coding was writing the code 
to partition the imagery into proper sized chunks to send to the next transputer in the network, 

•   •  16    17 

Figure 8: The 256 x 256 sized image broken up into approximately equal sections for processing among 17 
transputers. Two sections have one extra column since 17 divides into 256 15 times, with a remainder of 2. The 
image has been distorted here for visualization purposes. 

[2] Designing Efficient Algorithms, pageöl. 



what data to keep, and what data to pass on to the next one. The image must be divided into 
approximately equal portions for each transputer, in chunks of columns. If the image does not 
divide up equally, an extra column must be given to the first transputers in the network until all the 
extra columns are used up. 

6.4 Edge Effects 
Although an image may divide equally among processors, the overlapping edges of the data on 
each transputer must also be taken into consideration to achieve correct results at the edges. The 
outer perimeter of the image must also be taken into consideration, where there is no data to 
compensate for the overlap. The output image may be smaller than the input image at the outer 
perimeter in some algorithms, so it with be buffered with zeros to avoid erroneous results in the 
output image. 
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Figure 9: When the mask is passed along the image, we can see there is an overlap created equal to one half the 
size of the mask being used on the image (truncated one half). In this case, the 3x3 sized mask creates an overlap 
of 1 around the image. 
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Figure 10: The overlap created by the mask requires an extra column on both sides of the image chunk in order to 
process the entire image correctly, which is illustrated by the shaded portion. The perimeter along the top and the 
bottom of the image chunk, as well as the left and right sides of the complete image, are compensated by filling the 
output image with zeros at these edges. 



Figure 11: Each chunk of imagery requires this overlap, creating an extra two columns of imagery required on 
every transputer. 

For illustration purposes, the seventeen chunks of data will be referred to in order from zero to 
sixteen, rather than from one to seventeen. This will be easier to visualize which transputer is 
processing which portion of the image. Each transputer will process the same chunk of data, 
regardless of being in the straight pipe or ring configuration, when in the multiple transputer 
mode. The difference will be how the data gets to each transputer, and the amount of time it takes. 
When executing algorithms on a single transputer, the entire image will be processed on the root 
transputer, where the only edge effects necessary for consideration are the four outer perimeter 
edges of the image. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 12: A representation of the 256 x 256 pixel image divided into its 17 chunks, ranging from 0 to 16. 

6.5 Naming Convention 
Determining what portion of data gets passed where in the network can become quite confusing, 
especially if data is flowing simultaneously in two directions as in the case of the ring network. 
For this purpose, some sort of naming convention must be established to limit the amount of 
confusion. 

6.5.1 Straight Pipe Network 
For the straight pipe, data can only flow up the pipe or down the pipe. Data flowing from a lower 
numbered transputer to a higher numbered transputer, as in the case of Figure 15, is data flowing 
UP the pipe. Data flowing from a higher numbered transputer to a lowered one is data flowing 
DOWN the pipe. 
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Figure 13: A simplified view of data flow using the seventeen transputer pipe configuration. The root transputer 
keeps the first portion of the image, and passes the rest of the data up the pipe as indicated. 
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6.5.2 Ring Network 
For the ring network, data is flowing in four directions, so a naming convention is a little more 
complicated here. If the ring can be visualized as transputers #1-8 on top of the ring, and 
transputers #9-16 on the bottom of the ring, the ring can now have an upper and lower portion to 
it. Data flowing from a lower numbered transputer to a higher numbered transputer on the upper 
portion of the ring is data flowing UP the upper portion, and the reverse is data flowing DOWN 
the upper portion. Data flowing from a higher numbered transputer to a lower numbered 
transputer on the lower portion of the ring is data flowing UP the lower portion, and the reverse is 
data flowing DOWN the lower portion. The data in Figure 16 is flowing UP both portions of the 
ring network, and should make this explanation easier to understand. 
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Figure 14: A simplified view of data flow using the seventeen transputer ring configuration. The root transputer 
keeps the first portion of the image, and passes half of the remaining data up the upper portion of the ring, and the 
other half up the lower portion of the ring. 

6.6 Distributing Data 
Although each transputer obtains the exact portion of data, regardless of the network 
configuration it is in, the manner in which the data is distributed is quite different among 
configurations. 

6.6.1 Pipe Configuration 
As the data is passed up the pipe, each transputer in the ring keeps the designated amount data it 
requires, and passes the rest on to the next transputer in the ring. This trickling effect is continued 
until the last transputer in the pipe is reached. At this point all the appropriate data is contained in 
all of the corresponding transputers. To return the data back to the root transputer, the data has to 
trickle down the pipe from transputer #16 all the way back down to the root transputer, since the 
root transputer is the only transputer that can read and write to the system. As the data comes 
down the pipe it is pieced together at each transputer, combining any data already received with its 
own data. Once all the data reaches the root transputer, the new processed image is written out to 
a file. 

6.6.2 Ring Configuration 
As the data is passed up the pipe, each transputer in the ring keeps the designated amount of data 
it requires, and passes the rest on to the next transputer in the ring. This trickling effect is 
continued until transputer #8 up the pipe, and transputer #9 down the pipe are reached. Once 
these two transputers are reached, all the appropriate data will be contained in all of the 
corresponding transputers. Although transputers #8 and #9 are physically connected within the 
ring, there is no need to pass data to or from these two in this configuration. To return the data 
back to the root transputer, the data has to trickle down the upper and lower portions of the ring 
simultaneously. Transputer #8 starts to send data down the upper portion of the ring, while 
transputer #9 starts to send data down simultaneously, where each transputer is combining 
receiving data with its own along the way before passing it on. At the root transputer, the root 
must combine both the upper portion of the image with its own data, and also the lower portion of 
the image before the new processed image is written out to a file. Once this is all completed, the 
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image can be processed in any manner necessary. Then, the processed results must be sent back 
in the proper order to put together the entire processed image. 

Whole 

Image Send 2^16               SendjM6                 Send ^-16                  Send 8-16 

i Send ^16 Send 3-16 Send^-16 Send^16 

TO T1 T2 T3 T4 T5 T6 T7 _ T8 

kee p: 0 1 2 3 4 5 6 7 8 

Send 

Send 15-16 Send 13-16 Send11-16 9-16 

Send 16        ^"~   Send 14-16   ^~    Send, 12-16   ^~~      Send 10-16 

STOP 

keep: 

T16 

16 

T15 

15 

T14 
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11 

T10 

10 
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Figure 15: The data trickling effect UP the pipe of transputers. 
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T15 
15 

T14 
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T13 

13 

T12 T11 
11 

T10 
10 
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STOP 

Figure 16: The data trickling effect Up both portions of the ring of transputers simultaneously. 

To summarize, the mask and imagery must be read in, the required overlap must be determined, 
the size of the image chunks must be calculated, any excess portion of the image that needs to be 
distributed must be calculated, whatever portion of the image the root transputer does not require 
must be passed on to the other transputers, each transputer in the network must save necessary 
data and pass unnecessary data to subsequent transputers in the ring, calculate all the results, 
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calculate required timings, pass the data back to the root transputer combining it in the proper 
order, then write the new image file to memory. 

6.7 Communication vs. Processing 
Since communication costs must be considered when determining the complexity of a parallel 
algorithm, a convention must be established for determining what constitutes communication, and 
what actually constitutes actual data computations, or actual processing. The clocks on each 
separate transputer are not synchronized, so the time recorded on one transputer has no 
meaningful relationship to the time recorded on a different transputer. The only significant 
information from the clocks is the difference between two separate readings of the clock on the 
same transputer. So if the starting time is taken from the root transputer, and the finishing time is 
taken from the last transputer in the network, the difference in these two numbers will be 
irrelevant. For this reason, the timing calculations will be done only on two transputers, the root 
transputer and the first transputer connected directly to the root. The root transputer will record 
the starting and ending times of the entire algorithm, since all algorithms must start and finish on 
the root transputer, regardless of the network configuration. All actual computation times will be 
taken from the first transputer. Since all transputers are performing the same computations and 
are doing approximately the same amount of work, they should all require approximately the 
same amount of time to perform. Since the first transputer is connected directly to the root 
transputer, and data needs to be passed to the root transputer to perform all additional calculations, 
this is the easiest processor to use because it can pass the data directly to the root without having 
to trickle down the network from anywhere else. So the timing convention will be as follows: 
Total time will be defined as the time it requires from start to finish to perform a given process on 
all transputers in the network. Computation time will be the time required for a single transputer 
to perform all necessary calculations in the process. I/O time will be the Total Time minus the 
Computation Time. 

7.0 Results 
The next twenty pages illustrate the results of the ten selected algorithms using both the pipe and 
the ring networks, for one through seventeen transputers in increments of two. Six graphs are 
presented for a better understanding of how effective each algorithm performed. The first three 
graphs are actual data results, while the last three required some calculations of these results. The 
speedup achieved by a parallel algorithm running on p processors is the ratio between the time 
taken by that parallel computer executing the fastest serial algorithm and the time taken by the 
same parallel computer executing the parallel algorithm on p processors.3 The computational 
speed-up is the speed-up considering only the time it took to perform the computations of the 
algorithms ignoring communication, where the total speed-up is the speed-up of the total time 
including computation and communication. The efficiency of a parallel algorithm running on p 
processors is the speed-up divided by p.4 Only the total efficiency will be taken into consideration 
for this project. 

[2] Designing Efficient Algorithms, pp. 43. 

[2] Designing Efficient Algorithms, pp. 43. 
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Table 1A: Average Pixel Intensity Value (PIPE) Results 

Computational Total 
#T800s Tp(sec') Tc(sec) Ttfsec) Speed Up Speed Up Efficiency 

1 0.189 1.052 1.241 1.00 1.00 1.00 
3 0.062 0.433 0.495 3.05 2.51 0.84 
5 0.037 0.427 0.464 5.11 2.67 0.53 
7 0.026 0.398 0.425 7.27 2.92 0.42 
9 0.021 0.384 0.405 9.00 3.06 0.34 

11 0.017 0.378 0.395 11.12 3.14 0.29 
13 0.014 0.385 0.399 13.50 3.11 0.24 
15 0.012 0.392 0.404 15.75 3.07 0.20 
17 0.011 0.385 0.396 17.18 3.13 0.18 

Table IB: Average Pixel Intensity Value (RING) Results 

#T800s Tp(sec) Tctsee) Tttsecl 
1 0.189 1.052 1.241 
3 0.064 0.427 0.491 
5 0.038 0.399 0.437 
7 0.027 0.385 0.413 
9 0.021 0.380 0.402 

11 0.018 0.376 0.394 
13 0.015 0.374 0.389 
15 0.013 0.374 0.387 
17 0.011 0.367 0.378 

Computational Total 
Speed Up Speed Up Efficiencv 

1.00 1.00 1.00 
2.95 2.53 0.84 
4.97 2.84 0.57 
7.00 3.00 0.43 
9.00 3.09 0.34 

10.50 3.15 0.29 
12.60 3.19 0.25 
14.54 3.21 0.21 
17.18 3.28 0.19 
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Figures 17A-17B: Figure 17A: Processing time curves for the pipe and ring architectures for the average pixel 
intensity value algorithm.  Figure 17B: Communication time curves for the same algorithm for both architectures. 
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17C-17D: Figure 17C: Total time curves for the pipe and ring architectures.  Figure 17D: Speed Up curves 
algorithm using the pipe architecture. 
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17F: Figure  17E: Speed Up curves for the algorithm using the ring architecture.    Figure  17F: 
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Table 2A: Threshold @ 128 Algorithm (PIPE) Results 

#T800s Tp(sec) Tc(sec) Ttfsec) 
1 0.294 1.057 1.351 
3 0.102 1.208 1.310 
5 0.061 1.167 1.228 
7 0.043 1.199 1.242 
9 0.034 1.135 1.169 

11 0.028 1.130 1.158 
13 0.023 1.171 1.195 
15 0.020 1.159 1.179 
17 0.018 1.123 1.141 

Computational 
Speed Up 

1.00 

Total 
Speed Up 

1.00 
Efficiency 

1.00 
2.88 1.03 0.34 
4.82 1.10 0.22 
6.84 1.09 0.16 
8.65 1.16 0.13 

10.50 1.17 0.11 
12.25 1.13 0.09 
14.70 1.15 0.08 
16.33 1.18 0.07 

Table 2B: Threshold @ 128 Algorithm (RING) Results 

Computational Total 

#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency 
1 0.294 1.057 1.351 1.00 1.00 1.00 
3 0.102 0.991 1.093 2.88 1.03 0.34 
5 0.061 0.976 1.037 4.82 1.10 0.22 
7 0.043 0.959 1.002 6.84 1.09 0.16 
9 0.034 0.936 0.970 8.65 1.16 0.13 

11 0.028 0.945 0.973 10.50 1.17 0.11 
13 0.023 0.930 0.954 12.25 1.13 0.09 
15 0.020 0.926 0.946 14.70 1.15 0.08 
17 0.018 0.932 0.950 16.33 1.18 0.07 
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Table 3A: Threshold @ Average Pixel Intensity Algorithm (PIPE) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 

1 0.491 1.051 1.542 1.00 1.00 1.00 
3 0.169 1.098 1.267 2.91 1.22 0.41 
5 0.102 1.075 1.177 4.81 1.31 0.26 
7 0.072 1.062 1.134 6.82 1.36 0.19 
9 0.057 1.040 1.083 8.61 1.42 0.16 

11 0.047 1.052 1.099 10.45 1.40 0.13 
13 0.039 1.049 1.088 12.59 1.42 0.11 
15 0.33 1.101 1.134 14.88 1.36 0.09 
17 0.029 1.038 1.067 16.93 1.45 0.08 

Table 3B: Threshold @ Average Pixel Intensity Algorithm (RING) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tt(sec) Süeed UD Soeed Up Efficiency 

1 0.491 1.051 1.542 1.00 1.00 1.00 
3 0.169 1.017 1.187 2.91 1.42 0.47 
5 0.102 0.980 1.082 4.81 1.43 0.29 
7 0.072 0.953 1.025 6.82 1.50 0.21 
9 0.057 0.954 1.011 8.61 1.49 0.17 

11 0.047 0.951 0.998 10.45 1.55 0.14 
13 0.39 0.947 0.987 12.59 1.56 0.12 
15 0.033 0.946 0.983 14.88 1.57 0.10 
17 0.029 0.943 0.972 16.93 1.59 0.09 
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Figures 19A-19B: Figure 19A: Processing time curves for the pipe and ring architectures for the threshold at the 
average intensity value algorithm. Figure 19B: Communication time curves for the same algorithm for both 
architectures. 

1.6 

1.4 

-5- 1.2 
CD 
CO 

E 
P   0.8 
"03 
o   0.6- 
h- 

. 0.4- 

0.2- 

0.0 

-a-   Pipe 
-♦-   Ring 

Q. 

Q. 

X3 
CU 
CD 
Q. 

CO 

20 

18 

16 

14 

12-j 

10 

8 

6 

4 

2 

0 

-B-   Computation 
-•-  Total 

1 5        7        9       1113 
Number of Transputers 

15     17 5        7        9       11      13 
Number of Transputers 

Figures 19C-19D: Figure 19C: Total time curves for the pipe and ring architectures.  Figure 19D: Speed Up curves 
for the algorithm using the pipe architecture. 
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Table 4A: 3x3 Convolution Filter Algorithm (PIPE) Results 
Computational Total 

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 
1 5.345 1.254 6.599 1.00 1.00 1.00 
3 1.637 1.203 2.840 3.27 2.32 0.77 
5 0.982 1.142 2.124 5.44 3.11 0.62 
7 0.708 1.057 1.765 7.55 3.74 0.53 
9 0.555 1.015 1.570 9.63 4.20 0.47 

11 0.459 1.048 1.507 11.64 4.38 0.40 
13 0.383 1.071 1.454 13.96 4.54 0.35 
15 0.325 1.000 1.325 16.45 4.95 0.33 
17 0.287 1.136 1.423 18.62 4.64 0.27 

Table 4B: 3x3 Convolution Filter Algorithm (RING) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiencv 

1 5.345 1.254 6.599 1.00 1.00 1.00 
3 1.613 1.084 2.697 3.31 2.45 0.82 
5 0.968 1.037 2.006 5.52 3.29 0.66 
7 0.698 0.979 1.677 7.66 3.94 0.56 
9 0.547 0.977 1.524 9.77 4.33 0.48 

11 0.453 1.053 1.506 11.80 4.38 0.40 
13 0.377 1.051 1.428 14.18 4.62 0.36 
15 0.321 1.021 1.342 16.65 4.92 0.33 
17 0.283 1.021 1.304 18.89 5.06 0.30 
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Figures 20A-20B: Figure  20A: Processing time curves for the pipe and ring architectures for the 3x3 convolution 
algorithm.  Figure  20B: Communication time curves for the same algorithm for both architectures. 
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20D: Figure 20C: Total time curves for the pipe and ring architectures.   Figure   20D: Speed Up 
algorithm using the pipe architecture. 
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Table 5A: Four Nearest Neighbor Mean Filter Algorithm (PIPE) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency 

1 2.057 1.156 3.109 1.00 1.00 1.00 
3 0.704 1.101 1.805 2.92 1.72 0.57 
5 0.423 1.084 1.507 4.86 2.06 0.41 
7 0.305 1.060 1.365 6.74 2.28 0.33 
9 0.239 1.042 1.281 8.61 2.43 0.27 

11 0.198 1.038 1.236 10.39 2.52 0.23 
13 0.165 1.120 1.285 12.47 2.42 0.19 
15 0.141 1.043 1.183 14.59 2.63 0.17 
17 0.124 1.102 1.226 16.59 2.54 0.14 

Table 5B: Four Nearest Neighbor Mean Filter Algorithm (RING) Results 

Computational Total 

#T800s Tpfsec) Tcfsec) Ttfsec) Speed Up Speed Up Efficiency 
1 2.057 1.156 3.109 1.00 1.00 1.00 
3 0.713 1.046 1.760 2.89 1.77 0.59 
5 0.428 0.980 1.408 4.81 2.21 0.44 
7 0.308 0.965 1.272 6.68 2.44 0.35 
9 0.241 0.956 1.198 8.54 2.60 0.29 

11 0.200 0.947 1.147 10.29 2.71 0.25 
13 0.167 0.943 1.110 12.32 2.80 0.22 
15 0.142 0.948 1.090 14.49 2.85 0.19 
17 0.125 0.957 1.082 16.46 2.87 0.17 
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Figures 21A-21B: Figure 21 A: Processing time curves for the pipe and ring architectures for the four nearest 
neighbor mean alaorithm.  Figure 21B: Communication time curves for the same algorithm for both arch;lectures. 
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Figures 21C-21D: Figure 21C: Total time curves for the pipe and ring architectures.  Figure 21D: Speed Up curves 
for the algorithm using the pipe architecture. 
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Figures    21E-21F: Figure 2IE: Speed Up curves for the algorithm using the ring architecture.    Figure 2IF: 
Efficiency of the pipe and ring architectures using the total algorithm time. 
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Table 6A: Eight Nearest Neighbor Mean Algorithm (PIPE) Results 

Computational Total 

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 

1 2.482 1.064 3.546 1.00 1.00 1.00 

3 0.781 1.114 1.896 3.18 1.87 0.62 

5 0.469 1.096 1.565 5.29 2.27 0.45 

7 0.336 1.060 1.396 7.39 2.54 0.36 

9 0.263 1.054 1.317 9.44 2.69 0.30 

11 0.218 1.049 1.267 11.38 2.80 0.25 

13 0.182 1.022 1.204 13.64 2.95 0.23 

15 0.155 1.049 1.204 16.01 2.95 0.20 

17 0.136 1.052 1.188 18.25 2.98 0.17 

Table 6B: Eight Nearest Neighbor Mean Algorithm (RING) Results 

Computational Total 

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Srjeed Up Efficiency 

1 2.482 1.064 3.546 1.00 1.00 1.00 

3 0.786 1.030 1.816 1.27 1.95 0.65 

5 0.472 0.985 1.457 5.26 2.43 0.49 

7 0.337 0.957 1.295 7.36 2.74 0.39 

9 0.265 0.940 1.205 9.37 2.94 0.33 

11 0.219 0.939 1.158 11.33 3.06 0.28 

13 0.183 0.976 1.159 13.56 3.06 0.24 

15 0.155 0.943 1.098 16.01 3.23 0.22 

17 0.137 0.933 1.070 18.12 3.31 0.19 
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Figures 22A-22B: Figure 22A: Processing time curves for the pipe and ring architectures for the eight nearest 
neighbor mean algorithm.   Figure 22B: Communication time curves for the same algorithm for both architectures. 
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Figures 22C-22D: Figure 22C: Total time curves for the pipe and ring architectures.  Figure 22D: Speed Up curves 
for the algorithm using the pipe architecture. 
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Table 7A: Four Nearest Neighbor Median Filter Algorithm (PIPE) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tttsec) Speed Up Speed Up Efficiency 

1 6.661 1.057 7.717 1.00 1.00 1.00 
3 2.143 1.130 3.272 3.61 2.04 0.68 
5 1.293 1.103 2.339 5.98 2.85 0.57 
7 0.917 0.998 1.915 8.43 3.48   ' 0.50 
9 0.705 0.995 1.700 10.97 3.92 0.44 

11 0.583 1.032 1.615 13.27 4.12 0.38 
13 0.489 1.001 1.490 15.82 4.47 0.34 
15 0.418 1.006 1.424 18.50 4.68 0.31 
17 0.369 1.015 1.383 20.96 4.82 0.28 

Table 7B: Four Nearest Neighbor Median Filter Algorithm (RING) Results 
Computational Total 

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 
1 6.661 1.057 7.717 1.00 1.00 1.00 

3 2.157 1.168 3.324 3.09 2.32 0.77 
5 1.299 1.049 2.348 5.13 3.29 0.66 
7 0.922 1.041 1.962 7.22 3.93 0.56 
9 0.709 0.973 1.682 9.39 4.59 0.51 

11 0.586 0.991 1.577 11.37 4.89 0.44 
13 0.491 0.985 1.477 13.57 5.22 0.40 
15 0.420 0.968 1.388 15.86 5.56 0.37 
17 0.371 0.976 1.347 17.96 5.73 0.34 
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Figures 23A-23B: Figure 23A: Processing time curves for the pipe and ring architectures for the four nearest 
median algorithm.  Figure 23B: Communication time curves for the same algorithm for both architectures. 
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Figures 23C-23D: Figure 23C: Total time curves for the pipe and ring architectures.  Figure 23D: Speed Up curves 
for the algorithm using the pipe architecture. 
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Figures 23E-23F: Figure 23E: Speed Up curves for the algorithm using the ring architecture.    Figure 23F: 
Efficiency of the pipe and ring architectures using the total algorithm time. 
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Table 8A: Eight Nearest Neighbor Median Filter Algorithm (PIPE) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Ttfsec) Speed Up Speed Up Efficiency 

1 15.499 1.102 16.551 1.00 1.00 1.00 

3 4.796 1.330 6.127 3.23 2.70 0.90 

5 2.900 1.112 4.013 5.34 4.12 0.82 

7 2.049 1.074 3.123 7.56 5.30 0.76 

9 1.575 1.077 2.652 9.84 6.24 0.69 

11 1.306 1.042 2.348 11.87 7.05 0.64 

13 1.095 1.011 2.106 14.15 7.86 0.60 

15 0.939 1.045 1.988 16.50 8.33 0.56 

17 0.282 1.054 1.878 18.72 8.81 0.52 

Table 8B: Eight Nearest Neighbor Median Filter Algorithm (RING) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tttsec) Speed Up Speed Up Efficiency 

1 15.499 1.102 16.551 1.00 1.00 1.00 

3 4.825 1.310 6.135 3.21 2.70 0.90 

5 2.909 1.112 4.021 5.33 4.12 0.82 

7 2.055 1.087 3.142 7.54 5.27 0.75 

9 1.580 1.102 2.682 9.81 6.17 0.69 

11 1.310 1.035 2.345 11.83 7.06 0.64 

13 1.099 0.996 2.095 14.10 7.90 0.60 
15 0.942 1.033 1.975 16.45 8.38 0.56 

17 0.830 1.026 1.857 18.67 8.91 0.52 
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24B: Figure 24A: Processing time curves for the pipe and ring architectures for the threshold 
sure 24B: Communication time curves for the same algorithm for both architectures. 
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Figures 24C-24D: Figure 24C: Total time curves for the pipe and ring architectures.  Figure 24D: Speed Up curves 
for the algorithm using the pipe architecture. 
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Table 9A: Sobel Filter Algorithm (PIPE) Results 

Computational Total 
#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 

1 8.977 1.085 10.062 1.00 1.00 1.00 
3 3.272 1.250 4.522 2.74 2.23 0.74 
5 1.963 1.123 3.086 4.57 3.26 0.65 
7 1.411 1.604 2.475 6.36 4.07 0.58 
9 1.106 1.052 2.158 8.12 4.66 0.52 

11 0.915 1.062 1.977 9.81 5.09 0.46 
13 0.763 1.039 1.802 11.77 5.58 0.43 
15 0.648 1.060 1.708 13.85 5.89 0.39 
17 0.572 1.085 1.657 15.69 6.07 0.36 

Table 9B: Sobel Filter Algorithm (RING) Results 

Computational Total 

#T800s Tp(sec) Tc(sec) Tt(sec) Speed Up Speed Up Efficiency 
1 8.977 1.085 10.062 1.00 1.00 1.00 
3 3.259 1.165 4.424 2.75 2.27 0.75 
5 1.955 1.068 3.023 4.59 3.33 0.66 
7 1.406 1.005 2.411 6.38 4.17 0.60 
9 1.102 0.972 2.072 8.15 4.85 0.54 

11 0.912 0.999 1.911 9.84 5.21 0.47 
13 0.760 1.066 1.826 11.81 5.84 0.45 
15 0.646 0.975 1.621 13.90 6.21 0.42 
17 0.570 0.969 1.539 15.75 6.54 0.38 
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Figures 25C-25D: Figure 25C: Total time curves for the pipe and ring architectures. Figure 25D: Speed Up 
curves for the algorithm using the pipe architecture. 
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Figures 25E-25F: Figure 25E: Speed Up curves for the algorithm using the ring architecture.   Figure 25F: 
Efficiency of the pipe and ring architectures using the total algorithm time. 
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Table 10A: Roberts Cross Filter Algorithm (PIPE) Results 

#T800s Tp(sec) Tc(sec) Ttrsecl 
1 2.344 1.057 3.401 
3 0.812 1.103 1.937 
5 0.488 1.093 1.581 
7 0.349 1.063 1.412 
9 0.274 1.036 1.310 

11 0.227 1.042 1.269 
13 0.189 1.047 1.236 
15 0.161 1.062 1.223 
17 0.142 1.048 1.190 

Computational Total 
Speed Up Speed Up Efficiency 

1.00 1.00 1.00 
2.89 1.76 0.58 
4.80 2.15 0.43 
6.72 2.41 0.34 
8.55 2.60 0.29 

10.33 2.68 0.24 
12.40 2.75 0.21 
14.56 2.78 0.19 
16.51 2.86 0.17 

Table 10B: Roberts Cross Filter Algorithm (RING) Results 

#T800s Tp(sec) Tc(sec) Tttsec) 
1 2.344 1.057 3.401 
3 0.813 1.035 1.847 
5 0.488 0.991 1.485 
7 0.349 0.976 1.325 
9 0.274 0.971 1.245 

11 0.227 0.972 1.199 
13 0.189 0.951 1.140 
15 0.161 0.958 1.119 
17 0.142 0.971 1.114 

Computational 
Speed Up 

1.00 

Total 
Speed Up 

1.00 
Efficiency 

1.00 
2.88 1.84 0.61 
4.80 2.29 0.46 
6.72 2.57 0.37 
8.55 2.73 0.30 

10.33 2.83 0.26 
12.40 2.98 0.23 
15.56 3.04 0.20 
16.55 3.05 0.18 
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Figures 26A-26B: Figure 26A: Processing time curves for the pipe and ring architectures for the threshold 
algorithm.  Figure 26B: Communication time curves for the same algorithm for both architectures. 
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Figures 26C-26D: Figure 26C: Total time curves for the pipe and ring architectures.  Figure 26D: Speed Up curves 
for the algorithm using the pipe architecture. 
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8.0 Analysis 
The analysis is broken up into two different sections. The first section analyzes the problems 
encountered in the project in general, and the second portion analyzes the results obtained from 
the parallel implementation. 

8.1 Problems Encountered 
Five basic problems arose when mapping the serial algorithms from the single transputer 
algorithms into parallel algorithms on multiple transputers. Here is a detailed description of the 
problems encountered. 

8.1.1 Debugging 
Although Occam comes with an excellent debugging tool, there is more to it than that. Since only 
the root transputer is connected to the host, this is the only transputer that can perform I/O. The 
other transputers can not write to the screen. This has presented a problem when attempting to 
debug a program utilizing the seventeen transputers. Since variables cannot be written to the 
screen to see what their values are to assist in debugging, STOP (break) statements must be 
inserted in the code to check the variables. This has proven to be a time consuming chore. So 
even the tiniest error, if not obvious, requires painstaking debugging techniques. 

8.1.2 Global Normalization 
Some routines require global normalization, since after computation they have very large negative 
values and very large positive values. Each transputer calculates its own local minimum and 
maximum variables, and each of these values is different for each transputer. If each transputer 
normalized its portion of the image it has stored in memory using its local values, the resulting 
image would be chunks of columns with varying shades of grey. The local minimum and 
maximum values from each transputer must first be calculated then passed through the network 
back to the root transputer through the channels connecting them, comparing them along the way 
to obtain the global values. Once the global values are obtained, these values must be passed back 
to all of the transputers, so they can all normalize with the same minimum and maximum values. 

8.1.3 Lines In The Output Image (Partitioning the Data) 
A problem arose where vertical black lines were appearing in the output image. This was due to 
the fact that the output image was being initialized to be zero all over to avoid erroneous values at 
the borders that are not calculated. Then when the calculations were performed, not enough 
columns were being orocessed on each transputer, therefore resulting in columns remaining at 
value zero (similar to figure 11). This problem was corrected and all routines are now producing 
smooth images with no lines in them. 

8.1.4 Deadlock 

Deadlock occurs when two or more concurrent processes are stuck waiting for each other due to a 
communication interdependence The most common deadlock occurring is when a transputer 
sends data over a channel, and another transputer is waiting to receive data on a different channel, 
thus, the two are stuck waiting. All channels must be declared, and data types must match when 
passing data among processors. 

Each transputer has at least one pair of unidirectional connections from its own link to the 
connecting transputer's link. The connecting pairs make up a "channel" of communication 
between transputers. Data can only flow in one direction on these links, and on most of the 
transputers, there are two channels connecting more than one transputer. Data flows "out" of 
one transputer and "in" to another in appropriate links. Once the links have been established for 

35 



data flow, the data cannot flow against the original configuration. Hence, they are unidirectional 
links that always flow in the same direction. A problem encountered in this project was that data 
was being sent out of one transputer, and waiting to be received at another transputer, and hanging 
in the process. In debugging, it hung right at the send command in one transputer, and right on 
the receive command at another transputer. So the program was stuck sending data, and receiving 
it at the same time, which did not make sense. The problem was that data was being sent out of 
one channel, and waiting to be received from another channel on another link of the transputer, so 
the data essentially would never get there. Once the problem was discovered, it was quite simple 
to listen from the correct channel to receive it and solve the problem. It was sometimes essential 
in debugging to physically draw out the network and its channels, to visualize the path of data 
flow. 

2. Receive 

Figure 27: Deadlock between two transputers. Processor P2 sends data to processor P3, which attempts to receive 
the data along a different channel than the data was sent on. Both processors are in a state of deadlock and cannot 
proceed. 

8.1.5 Type Casting 
Occam is a very type specific language. Every variable has to be declared as a specific type, and 
different types cannot be used in conjunction with each other. Occam does allow type conversion, 
where a value of a primitive type can be converted to a numerically similar value of another 
primitive type. The image files I have that need to be displayed are data type BYTE, which ranges 
from 0 to 255. In order to do any type of arithmetic operations, the image values must be 
converted to data type INT, and to perform more intricate operations, the data must sometimes be 
converted to REAL. All these conversions get confusing, and the compiler makes sure they're all 
properly done with no exceptions. Although these conversions save having to declare several 
extra variables, it becomes time consuming and sometimes confusing because of the strict 
compiler. The whole point of types is to prevent values being used in inappropriate situations, so 
I guess this type of problem is common. 

8.2 Parallel Implementation Analysis 
This section will analyze the actual results achieved, by analyzing the graphs plotted in section 
seven. There was no significant difference between the straight pipe network and the ring 
network, due to the vast amount of data shuffling that was required. 

8.2.1 Speed-Up 

Initially, it was predicted that these selected algorithms would exhibit a near-linear speed-up when 
executed in parallel on multiple transputers. By analyzing the graphs from the previous section, it 
is clearly not the case. Most algorithms exhibited a near-linear speed-up in the computations, but 
for the total time speed-up quickly peaks and levels off. 

8.2.1.1 Factors That Limit Speed-Up 
A parallel algorithm can exhibit constrained speed-up if there isn't enough work to be done by the 
number of available processors, thus creating idle processors, which is more commonly referred 
to as Amdahl effect. The size of the input problem could also have a serious effect on limiting the 
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speed-up of an algorithm. In this particular case, the communication times of the algorithms is 
clearly the dominating factor in the total time of the algorithms. Since communication cannot be 
ignored when calculating the speed-up, the near-linear speed-up achieved by the array of 
transputers is irrelevant. 

8.2.2 Ease-Of-Implementation 
The Occam language was difficult to grasp at first. Though once the core algorithms were set up 
for properly partitioning the data, the rest of the job was quite easy. The debugger was a big help, 
and usually was thorough enough to solve most problems encountered. The biggest stumbling 
block of this project was first to figure out how the data was to be partitioned, then to get it to its 
designated transputer as efficiently as possible. Although the entire image could have been sent to 
each transputer, it would have been much more inefficient to do so. Instead, only the required 
chunks of imagery were sent. 

8.2.3 Efficiency 
As we can see by the efficiency graphs from the previous section, efficiency was drastically 
reduced as the number of processors increased. Although the rules for effective parallel 
processing were closely followed by minimizing the number of process creations and 
synchronizations, communication overhead was extremely large due to the size of the data in an 
image. The amount of work done between synchronizations was as large as possible, while 
keeping all the processors busy, but more time was spent passing and receiving the image through 
the network than was done in actual processing. 

8.2.4 Suggested Improvements 
Since the cost of communication is so high when dealing with imagery, the only suggested 
improvement to achieve greater speed-up and increased efficiency is to perform more processing 
on an image while it is in the memory of the transputer. As we can see by the speed-up graphs 
and efficiency graphs, the algorithms that had to do more calculations achieved a greater speed-up 
per processor as well as increased efficiency. For example, the eight nearest neighbor median 
algorithm had to perform the most calculations, and achieves the greatest results (see Figures 
24A-F). Each pixel processed in this algorithm had to be sorted with its eight nearest neighbors 
to obtain the new value. 

This selection of algorithms used in this project is good representation of commonly used 
algorithms in the image processing arena, they are more commonly used together. For example, 
an initial image may be smoothed by an averaging routine, then applied some form of edge 
detection, then thresholded at a particular value. This would greatly increase the speed-up and 
efficiency of the routine by performing various operations one after another while the image was 
in the transputers' memory. 

9.0 Conclusions 
Since this report was started, the transputers are close to being obsolete. Computer technology 
has advanced tremendously since the initial purchase of these transputers, and prices have been 
reduced drastically. Single processor chips capable of handling over 2 billion operations per 
second are now commercially available at an affordable price, thus making the need for a large 
number of processors unnecessary. In some instances there is no longer a need for more than a 
single processor with this level of power. 

Although this technology is old at the point of concluding this experiment - this experiment was 
far from a waste of time. The project has been helpful in understanding the variety of problems 
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associated with image processing that are taken for granted by the user, such as the highly 
complicated process of breaking the image up, calculating the required overlap, processing it, and 
reassembling it correctly. These insights give a better appreciation of what goes on "behind the 
scenes" in parallel algorithms. It also helps the programmer realize why writing efficient 
programs is so important and how useful a debugging tool is. 
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